
Eunomia: Scaling Concurrent Search
Trees under Contention Using HTM

Xin Wang*†, Weihua Zhang*†, Zhaoguo Wang§, Ziyun Wei*†, Haibo Chen‡, Wenyun Zhao†¶
* Software School, Fudan University

†Shanghai Key Laboratory of Data Science, Fudan University
¶School of Computer Science, Fudan University

‡Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University
§Computer Science Department, New York University

{xin wang,zhangweihua,weizy14,wyzhao}@fudan.edu.cn zhaoguo@nyu.edu haibochen@sjtu.edu.cn

Abstract
While hardware transactional memory (HTM) has recently
been adopted to construct efficient concurrent search tree
structures, such designs fail to deliver scalable performance
under contention. In this paper, we first conduct a detailed
analysis on an HTM-based concurrent B+Tree, which un-
covers several reasons for excessive HTM aborts induced
by both false and true conflicts under contention. Based
on the analysis, we advocate Eunomia, a design pattern
for search trees which contains several principles to reduce
HTM aborts, including splitting HTM regions with version-
based concurrency control to reduce HTM working sets,
partitioned data layout to reduce false conflicts, proactively
detecting and avoiding true conflicts, and adaptive con-
currency control. To validate their effectiveness, we apply
such designs to construct a scalable concurrent B+Tree
using HTM. Evaluation using key-value store benchmarks
on a 20-core HTM-capable multi-core machine shows that
Eunomia leads to 5X-11X speedup under high contention,
while incurring small overhead under low contention.

Categories and Subject Descriptors D.1.3 [Concurrent
Programming]: Parallel programming

Keywords Hardware Transactional Memory, Concurrent
Search Tree, Opportunistic Consistency

1. Introduction
The emergence of hardware transactional memory (HTM) [19]
provides a new opportunity to construct concurrent tree

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

PPoPP ’17, February 04-08, 2017, Austin, TX, USA
Copyright c� 2017 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4493-7/17/02. . . $15.00
DOI: http://dx.doi.org/10.1145/3018743.3018752

structures. HTM exploits cache coherence mechanisms
to protect the consistency of critical sections, which
may approach the performance of fine-grained locking or
even lock-free schemes while preserving the simplicity of
programming with coarse-grained locking. For this reason,
there have been plenty of efforts to provide concurrent
tree structures (e.g., binary search tree and B-Tree) using
HTM [10, 32, 34], which was shown to achieve comparable
or higher performance than lock-based schemes under low
contention.

However, HTM, as an opportunistic scheme, can have
a high abort rate under contention, where access conflicts
among multiple cores may collapse the performance of
an application. Yet, there are a number of scenarios in
which applications may face high contention [21, 22, 33],
due to an increased number of processor cores [37], a
skewed distribution of key accesses [17], or the contention
on shared entities in databases [22]. Consequently, current
HTM-based concurrent search tree structures fail to deliver
stable and scalable performance when workloads exhibit
high contention.

This paper attempts to answer a natural question: with
the assistance of HTM, can we construct a concurrent search
tree structure that delivers high and scalable performance
even under high contention? To answer this paper, we first
present a detailed analysis of the performance of a recent
concurrent HTM-based B+Tree used in several in-memory
databases [10, 32, 34]. We choose the B+Tree [3] because
it is a representative concurrent search tree structure widely
adopted in databases and file systems. Our analysis uncov-
ers several key issues leading to non-scalable performance
under contention.

First, conventional search tree structures store keys in
sorted order, which incurs severe false sharing under HTM
due to a coarse-grained (i.e., cache line) conflict checking.
Second, conventional search tree structures intrinsically con-
tain pervasive shared metadata to maintain semantics, and

accesses to shared variables usually cause conflicts among
transactions. Third, most HTM conflicts occur in common
parts, which will abort the entire transaction and incur an
expensive retry, leading to excessive re-execution overhead.

Based on the analysis, we present Eunomia, a design
pattern that attempts to tackle the above issues with the fol-
lowing design guidelines. First, based on the observation that
most HTM conflicts happen in the leaf layer, we partition
a monolithic HTM region into multiple parts and protect
the atomicity of different parts using HTM respectively.
A version-based scheme is utilized to guarantee overall
consistency at the boundary of different HTM regions. With
this scheme, most conflicts only cause retry within the par-
titioned transaction pieces, instead of the entire monolithic
transaction. Second, to eliminate false conflicts incurred by
consecutive data layout and metadata accesses, Eunomia
refactors the tree structure in a partitioned way, which
dispatches concurrent requests to different segments. Third,
to throttle the true conflicting requests, Eunomia adopts an
efficient mechanism, which anticipates potential conflicts
and avoids them accordingly. Finally, Eunomia adopts an
adaptive contention control mechanism, which can detect
various contention rates and achieve high performance under
both high and low contention.

We have applied these design guidelines to a concurrent
B+Tree on Intel’s Restricted Transactional Memory (RTM),
called Euno-B+Tree. Experimental results using the YCSB
benchmark to evaluate key-value store performance show
that under high contention, Euno-B+Tree can yield 5X-11X
speedup over conventional HTM-based B+Tree and 1.6X
speedup over fine-grained lock-based B+Tree, with less than
6% overhead under low and modest contention. The space
overhead is lower than 5%.

In summary, this work makes the following contribu-
tions.
• A comprehensive analysis of an HTM-based concurrent

search tree structure (i.e., a B+Tree) under high con-
tention.

• A design pattern with four design guidelines for scalable
concurrent HTM-based tree structures.

• A scalable and concurrent B+Tree that applies the above
design pattern, yielding high performance and scalability
with contended workloads.

2. Background and Motivation
This section describes the necessary background regarding
HTM and uses B+Tree, a widely used concurrent search tree
structure, to illustrate the issues of using HTM to construct
concurrent search tree structures under contention.

2.1 HTM Semantics and Concurrent B+Tree
With the commercial availability of IBM z- and p-Series [9,
30] and Intel Haswell [12] processors, HTM [19] has been
widely available to the mass market. Here we use Intel’s

RTM1 as an example to illustrate the semantics and quirks
of HTM.

RTM provides xbegin and xend primitives to enclose
a critical region which should be executed transactionally.
Memory addresses read and written within an RTM region
constitute the read-set and write-set accordingly. A conflict-
ing access occurs if one RTM transaction (i.e., a running
instance of an RTM region) has a read set that overlaps
with another concurrent transaction’s write set or if their
write sets overlap. RTM provides strong atomicity [6]. If an
RTM transaction conflicts with concurrent memory opera-
tions from other transactional or non-transactional code, the
processor will abort the transaction. If an RTM transaction
is aborted, all its writes will be discarded and the program
state will be rolled back to the beginning of the execution.
Otherwise, all memory modifications within an RTM region
will appear to happen atomically.

However, as a hardware mechanism, RTM provides no
forward progress guarantee. Consequently, it is the program-
mers’ responsibility to provide a fallback handler when an
RTM transaction retries a predefined threshold. In practice,
the fallback handler usually acquires a coarse-grained lock,
all other transactionally executing threads eliding the same
lock will abort, and the execution serializes on the lock [13].
Hence, the performance of an RTM transaction will fall back
to a coarse-grained lock scheme with additional cost of RTM
aborts.

2.2 HTM-based B+Tree

Algorithm 1 HTM-Based Put Interface
1: procedure PUT(key, newVal)
2: XBEGIN()
3: node = root
4: d = depth
5: //1. traversing internal nodes
6: while d 6= 0 do
7: node = node.findChild(key)
8: d = d - 1
9: //2. traversing leaf nodes

10: leaf = node
11: record = leaf.findRecord(key)
12: if record 6= null then
13: record.value = newVal;
14: else
15: newNode = leaf.insert(key, newVal)
16: //3. propagating splits upwards
17: while newNode 6= null do
18: parent = newNode.getParent()
19: newNode = parent.insertNode(newNode)
20: XEND()

The promising features of HTM like strong atomicity
and processor-assisted conflict detection have stimulated the

1 We will use RTM and HTM interchangeably in this paper

use of HTM to construct concurrent search tree structures.
Here, we use an HTM-based B+Tree from DBX [32], an
in-memory database, as an example. A B+Tree is a B-
Tree in which internal nodes only store keys, and only
leaves are associated with values [3]. The HTM-B+Tree
adopts HTM regions to protect operations of the B+Tree
such as get, put, and delete. This design was later adopted
and shown to be effective in other distributed in-memory
databases [10, 34]. Since most HTM-B+Tree operations
share the major process of accessing B+Tree, here we use
the put operation as an example to illustrate the access
algorithm of HTM-B+Tree in Algorithm 1, which comprises
the following steps. For brevity, we omit the structural
changes and rebalance operations.

(1) Traversing the internal nodes (Lines 6-8). In this
stage, the request traverses tree edges from the root to the
target leaf node; (2) Traversing the leaf nodes (Lines 10-15).
The request first detects if there are duplicate keys in the
target leaf. If so, the put operation changes into an update;
otherwise it will insert a new record; (3) Propagating splits
upwards (Lines 17-19). For a put operation, if the target
leaf node is already full, then insertion triggers splits, and
propagates the split upwards until encountering an internal
node with empty slots.

The three stages are included in a monolithic HTM region
marked by xbegin and xend primitives; such a coarse-grained
HTM region eliminates the complexity of maintaining fine-
grained locks and makes it easy to reason about correctness.
As a result, it was shown to have much better performance
compared to a state-of-the-art B+Tree (i.e., Masstree [20])
under low to modest contention [32].

2.3 Issues under High Contention
While the HTM-based concurrent tree structure has high
performance under low and modest contention, its perfor-
mance may collapse under high contention. To illustrate
this, we evaluate the throughput of HTM-based B+Tree
using the YCSB benchmark with the Zipfian input distribu-
tion [17, 25]. We adjust the skew coefficient ✓ in the Zipfian
distribution to simulate different levels of contention. We
test it on a 20-core platform with Intel’s TSX [12] support.
All the performance results are collected using 16 threads
(a few cores are reserved for controlling threads). Threads
are distributed equally on two sockets (detailed experimental
setup in section 5.1).

As shown in Figure 1, with low contention rate (i.e.,
skew coefficient ✓ < 0.6), the HTM-based B+Tree achieves
high and stable performance. However, when the contention
rate increases (e.g., ✓ > 0.6), performance of an HTM-
based B+Tree drops sharply. When ✓ = 0.9, the performance
decreases to lower than 3 million ops/s. To understand the
reasons behind the performance collapse, we collect the
number of HTM aborts. Since adding performance counters
to each HTM region severely hinders the overall throughput,
here we set performance counters in every 10 operations, so

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
h

ro
u

g
h

p
u

t
(M

ill
io

n
 o

p
s/

se
c)

Skew Coefficient (θ)

HTM-B+Tree

Figure 1: Performance under different contention rates.

that the performance with HTM counters deviates little from
that without counters. As shown in Figure 2, the HTM abort
rate increases sharply with the contention rate; the HTM
abort rate for ✓ = 0.9 is around 47X higher than that for
✓ = 0.5. The collected CPU cycles also show that frequent
HTM aborts and retries waste more than 94% of the total
CPU cycles when ✓ = 0.9.

 0

 10

 20

 30

 40

 50

 60

 70

0.5 0.6 0.7 0.8 0.9 0.99

H
T

M
 A

b
o

rt
s

p
e

r
O

p
e

ra
tio

n

Skew Coefficient (θ)

Same Record
Meta-Data

Different Records

Figure 2: HTM aborts incurred by different reasons.

To understand the underlying reasons for collapsed per-
formance under high contention, we perform a detailed
analysis and uncover three main sources of aborts.
• High retry cost due to monolithic transactions. While

using a monolithic transaction for a critical section
provides consistency with trivial effort, it also causes
increased abort rates. Even worse, a retry from a leaf
node would waste a lot of useful work, causing high retry
cost. Our analysis finds that the distribution of conflicts is
non-uniform in the B+Tree: more than 90% of conflicts
occur in the leaf level. In this case, a conflict in leaf nodes
will abort the entire tree traversal from root to leaf, even
though there is no conflict in internal nodes.

• False conflicts. False Conflicts are conflicts incurred
by requests accessing different records. False conflicts
stem from two major reasons. The first one is cache line
sharing of consecutive records. B+Tree arranges keys
stored in a node in a consecutive manner to provide an
ordered store. However, such data layout causes severe
conflicts under high contention. Since HTM detects
conflicts at cache line granularity, concurrently accessing
data in the same cache line would result in increased

conflict rates within nodes. The second reason is access-
ing the shared metadata in the B+Tree. A conventional
B+Tree inherently contains pervasive shared variables to
maintain tree structure invariants (e.g., number of layers
and version number of nodes). We categorize conflicts
incurred by shared metadata as false conflicts since their
target records are actually different. Since it is difficult to
directly measure the exact percentage of false conflicts,
we approximate the decomposition by excluding other
affected factors and estimating the abort rate. To estimate
the impact of “same record,” we modified the Zipfian
distributed workloads to prevent different threads from
accessing the same records and collect the reduction on
HTM aborts. We calculate the HTM aborts from access-
ing different records (e.g., when inserting consecutive
records) by subtracting previous rates from the total rate.
As to shared metadata, it is hard to remove all shared
variables in the tree structure as some are indispensable
to proceed with execution. We remove shared variables
for version and node status, and estimate the reduction of
aborts. As shown in Figure 2, 87%-90% of conflicts are
caused by requests to different keys, which is the primary
reason for the growth of abort rate. Besides, the conflicts
incurred by shared metadata contribute 6%-10%, which
is also a non-negligible source.

• True conflicts. True conflicts are conflicts incurred by
requests accessing exactly the same record. For work-
loads under high contention, the probability that multiple
requests access the same record simultaneously is inher-
ently high, which is a significant source of conflict. From
Figure 2, we can observe that 9%-12% of conflicts are
incurred by requests to the same records.

3. Eunomia Design Pattern
Based on the above analysis, this section describes the Euno-
mia design pattern, which comprises four design guidelines
to scale concurrent search tree structures under contention
using HTM:

Splitting large HTM transactions with opportunistic con-
sistency validation. Since retrying a large HTM transac-
tion causes high retry cost, an intuitive way is to decom-
pose a large HTM transaction into a few smaller HTM
transactions. Based on the observation that the distribution
of conflict aborts may be non-uniform, the decomposition
can be guided by the distribution of aborts to reduce the
retry code path, e.g., separating the internal nodes from
the leaf nodes. However, one key remaining challenge is
that there is no longer an atomicity guarantee among the
decomposed transactions, which causes inconsistency for
a concurrent data structure. To this end, Eunomia uses a
version-based opportunistic consistency validation. The idea
is based on the observation that for concurrent search trees,
the interior tree structure is updated less frequently than the
leaf nodes. Eunomia can use a version number to represent

the tree’s generation and only update the version upon a split
or rebalance operation. The leaf nodes can then check the
version to see if it needs to retry from the root (rare case)
or just from the leaf nodes (common case). In this way,
Eunomia can ensure the consistency while notably reducing
the retry cost.

Partitioning data layout to reduce false conflicts. Consec-
utive memory layout pervasively exists in concurrent search
trees like the leaf nodes in a B+Tree. However, such a
layout incurs high false conflict rate when multiple threads
access the data in the same cache line. To address this issue,
Eunomia first partitions the continuous records in leaf nodes
into multiple segments. Then requests to adjacent records
will be randomly distributed to different segments located
in different cache lines. Since requests to adjacent data are
scattered to different segments randomly, the false conflict
rate can be reduced. For operations requiring ordered data
(e.g., range query in B+Tree), Eunomia uses transient buffers
to store sorted keys gathered from multiple segments tem-
porarily. Hence, the original ordering semantics can still be
maintained.

Proactively detecting and avoiding true conflicts. The
probability that multiple threads access the same record is
high under high contention. Therefore true conflicts also
impact performance significantly. To mitigate this, Eunomia
proactively detects potential true conflicts and avoids them
accordingly. Eunomia adopts two main techniques. First,
when a node is nearly full or being split, requests to this node
are likely to incur conflicts. Therefore, Eunomia employs a
fine-grained advisory lock to serialize concurrent requests to
a leaf node if it is near full or in the process of split. Second,
detecting potential conflicts of every operation could be
a time-consuming process. Eunomia leverages a Bloom
filter [5] based mechanism to approximately detect potential
conflicts at low cost. For example, with a Bloom filter
attached to each leaf node, requests to a non-existent key
in the segment will be eliminated, reducing the conflict rate.

Adopting adaptive contention control strategy. While the
above design guidelines are helpful for a high contention
scenario, applications usually exhibit changing workloads
with different levels of contention. As the designs to handle
high contention may bring overhead under low contention,
Eunomia uses an adaptive contention control strategy to
detect contention rates and bypass extra overhead when
contention is low.

4. Concurrent B+Tree using Eunomia
This section describes how to apply the Eunomia’s de-
sign to construct a contention-conscious concurrent B+Tree
(namely Euno-B+Tree).

4.1 Design of Euno-B+Tree

…

…

…

…
…

xend

xbegin

xbegin

xend

Internal Node

Conflict Control
Module

Key Slots

Scheduler

Leaf Node

… …

upper region

lower region

… ……

Figure 3: Overview of Euno-B+Tree structure

Splitting HTM transactions: reducing retry cost. As
shown in Figure 3, Euno-B+Tree splits the original HTM
region into two parts: upper region, protecting the atomicity
of index traversing, where conflict rate is low; and lower
region, protecting the atomicity of leaf nodes accessing,
where conflict rate is high.

Trivially splitting the monolithic HTM region may in-
troduce inconsistency issue when node splits: consider if a
thread tries to insert record A, while a concurrent thread
tries to read record B. The read request will get the leaf
node pointer by traversing the tree index in the upper region.
However, before it enters (or retries) the lower region, the
leaf node may be split due to the concurrent insertion and
record B is moved to the sibling leaf node. The read request
will fail to get record B. The problem is the read request
gets the leaf node pointer in one HTM region, while it scans
the leaf node in another HTM region. As a result, the read
request is not aware of concurrent splitting.

Euno-B+Tree adopts the version-based consistency vali-
dation approach through a two-step transactional operation.
The first step passes a leaf pointer to the latter one. This
pointer is the “connection point” between two adjacent
transactions. If the pointed leaf splits, the overall atomicity
could be violated. Therefore, the overall consistency should
be guaranteed by a version number tracking the split opera-
tion (Figure 4). At the end of the upper region, the request
finds a pointer to the target leaf node, and reads the version
number of this node into a local variable before exiting the
upper region, while the version number will be checked
after entering the lower region (Section 4.2.1). For the above
example, after the read request gets the leaf node pointer in
the upper region, it also reads its version into a local variable.
When the leaf node is split due to insertion, its version is
updated. Therefore, the read request will be aware of the
split event by checking the version number at the beginning
of accessing the lower region or a new retry. As a result,
only when the leaf node splits will a request retry from
root; otherwise a conflicting request just retries in the lower
region.

Scattered leaf nodes: reducing false conflicts. As shown
in Figure 4, Euno-B+Tree redesigns the leaf layer in a
scattered way. Each leaf node is separated into multiple
segments. Only the keys in the same segment are kept

Write SchedulerParallel LeafNode

…

Segment 0
Reserved Keys

key_num: 0
Segment 1

key_num: 0
Segment N

Version Number

Split Lock

key_num:

Key-Value Pair Reserved Key-Value Pair

0

Figure 4: The data layout of leaf nodes.

sorted and stored consecutively, and the value pointers are
combined with keys for the convenience of sorting and
reorganization. Each segment has its own metadata to record
the number of stored elements. To avoid the conflict in the
same segment, we use a write scheduler to assign each
put operation to a random segment. Each leaf node also
maintains a version number to ensure the consistency of
the separated HTM regions. Each leaf node maintains a
lock (split lock) to serialize concurrent split operations. We
directly use a per-leaf advisory lock because concurrent split
operations on the same leaf node are highly likely to conflict
with each other.

Besides, we set reserved keys in each leaf node as a
transient buffer to hold the sorted keys to provide sorted
results for operations requiring ordered results (e.g., range
query). The reserved keys are only updated when it incurs
split or the first scan. The reserved keys are dynamically
allocated during a node splits or is under scan operation, and
the memory space is freed after the process. Therefore, there
is little extra memory consumption introduced (as analyzed
in Section 5.7). Such a design sacrifices the performance
of scan operations. However, since each segment is already
sorted, performing a merge sort is quick for a scan operation
and the sorted results can be reused for consecutive scan
operations.

Example. For a get request, to search a specific record,
Euno-B+Tree will compare the first and last elements of
each segment since keys are ordered within each segment
while unordered among multiple segments. For an insert
operation, Euno-B+Tree uses the write scheduler to as-
sign the operation to a random segment. With the random
write scheduler, the probability that multiple requests collide
within the same segment is reduced.

Hash
lock_bits

mark_bits

Figure 5: The hash function of conflict control module.

Conflict control with fine-grained locking: reducing true
conflicts. To proactively detect and eliminate true con-

flicts, Euno-B+Tree adds a conflict control module above
each leaf node. The conflict control module uses fine-
grained atomic locks to detect potential conflicts and avoid
two conflicting operations from accessing the same record
simultaneously. Figure 5 shows the basic layout of the
conflict control module for a single leaf node. It has a hash
function and two bit vectors: mark bits and lock bits. The
target key of a request will be hashed to a bit in the vector.
The lock bits function as fine-grained atomic locks attached
to each slot in the leaf node. It detects and serializes all
concurrent requests accessing the same key. It can avoid
conflicting operations (put vs. get, put vs. put) to enter the
HTM region simultaneously. The mark bits vector is used to
indicate the existence of the according key, resembling the
working mechanism of Bloom filter. If a request searches
for a nonexistent key, the mark bits will eliminate it from
entering the leaf node; thus fewer threads could enter the leaf
node and conflict rate is reduced further. We set the length
of the bit vector twice as the leaf node’s fanout so that the
space overhead is kept below 5% while the false positive
rate is kept under 6%.

Example. Consider two concurrent operations on the
same record: read and update. In a conventional HTM-
B+Tree, the read operation will abort as the concurrent put
will update the value of the same record. In contrast, with
the conflict control module, the read request will set the lock
bit first before entering the HTM region, then the put request
will be blocked until the read request finishes. As a result,
true conflicts in the HTM region are avoided.

Adaptive concurrency control. To reduce the overhead
for low contention rate, we use a contention detector in
conflict control module, which detects the contention rate
and adjust the contention control strategy accordingly. First,
the detector predicts the conflict probability of a leaf node
based on historical data. When the conflict rate of a leaf node
keeps below a threshold for a time period, its contention
rate is considered to be low. In such a condition, the new
incoming request will bypass the conflict control module and
leaf locks, skipping the overhead brought by these modules.
Note that, the adaptive concurrency control is done at a per-
leaf node basis so that each leaf node can choose its own
scheme according to its contention level.

4.2 Algorithms
Based on the above design, we further describe how Euno-
B+Tree handles common B+Tree operations, including get,
put (it will be changed into a simple update if the target key
exists; otherwise it will be changed into an insertion), and
range query.

4.2.1 Get/Put Interfaces
Algorithm 2 shows the traversal procedure shared by both
get and put operations. In Euno-B+Tree, the traversal proce-
dure is divided into two phases. The atomicity of each phase

Algorithm 2 Get/Put Interface (Two-Step Tree Traversal)
21: procedure TRAVERSE(REQ TYPE, key, newVal)
22: RETRY:
23: XBEGIN() //upper region
24: node = root
25: leaf = findLeaf(node, key)
26: seqno = leaf.seqno
27: ccm = leaf.CCModule //get the conflict control module
28: XEND()
29: slot = hash(key)
30: while !CAS(ccm[slot].lockBit, 0, 1) do
31: spin()
32: exist = ccm[slot].marked
33: if !exist then
34: if REQ TYPE == GET then
35: record = null
36: else //REQ TYPE == PUT
37: //insert the key if it does not exist
38: insert = CAS(ccm[slot].marked, 0, 1)
39: if insert and leaf.isNearFull() then
40: leaf.lock() //hold the lock for split
41: XBEGIN() //lower region
42: if seqno != leaf.seqno then
43: consistent = false //inconsistency happens
44: else
45: if exist then
46: record = leaf.getRecord(key)
47: if REQ TYPE == PUT then
48: if record == null then
49: record = INSERT(leaf, key)
50: record.value = newVal
51: XEND()
52: if leaf.isLocked() then
53: leaf.unlock()
54: ccm[slot].lockBit = 0
55: if !consistent then
56: goto RETRY

57: if REQ TYPE == GET then
58: return record

is protected by an HTM region, one for the upper region
(Lines 23-28) and one for the lower region (Lines 41-51)
accordingly. The fallback strategy is similar to that used in
DBX [32] and DrTM [34]. We set different thresholds for
different types of aborts, where an HTM region will enter
the fallback path according to the thresholds. We omit the
fallback path here for brevity. The conflict control module is
used to prevent conflicting requests from entering the lower
region simultaneously (Lines 29-40).

To process a put or a get request:

1. Euno-B+Tree first traverses the tree index from the root
to reach the leaf node (Lines 23-28). The atomicity of the
traversal is protected by an HTM region. Before exiting
the HTM region, it reads the current version number into
a local variable (Line 26).

2. Before entering the lower region, Euno-B+Tree uses
the conflict control module to serialize conflicting ac-
cesses on the same node (Lines 29-40). This is done
by atomically checking and setting the lock bit of the
corresponding key (Line 30). We use a set of atomic locks
to protect the atomicity of each byte in the bit vector.
After a request sets the lock bit successfully, it will check
if its target key exists or not by checking the mark bit
(Line 32). If it does not exist, for a get request, it will
return a null value; for a put request, it will set its bit in
the mark bits vector and begin an insert procedure. For an
insertion operation, if the leaf node needs to be split due
to the capacity limitation, it will try to acquire the split
lock before splitting (Line 40).

3. Scanning the leaf node is protected in the lower region
(Lines 41-51). At the beginning, it needs to check the
version number of the leaf node. If it has changed, it
means the node was split by a concurrent request before
entering or retrying the lower region (Line 43). In this
case, a request in the lower region could scan the wrong
leaf node. Thus it should retry from the root and search
for the latest proper leaf node. Otherwise, the leaf node
is still valid; the request will search for the target key in
this leaf node (Line 46). If the target key is not found in a
leaf node, the put request will insert a new key (Line 49);
otherwise, it will update the value of an existing key
(Line 50).

4.2.2 Insertions
When a put request attempts to update a non-existent record,
it will include an insertion to the tree structure. The target
leaf node will be split if it is full, and the split will propagate
upwards. As discussed in Section 2, highly-contended work-
loads usually result in a large amount of highly concurrent
operations, and intensive put operations incur highly con-
current insertions. Intensive insertions, combined with con-
secutive layout of leaf nodes, often generate false conflicts.
Retaining concurrency while reducing false conflicts is the
starting point of our insertion algorithm.

Based on the partitioned leaf nodes introduced in Sec-
tion 4.1, algorithm 3 illustrates concurrent insertions. The
important steps are shown in Figure 6.

1. The write scheduler will randomly distribute incoming
requests to different segments (Lines 60-66). The random
function records the index it generated last time, and
guarantees that the current index is not duplicated with
the last one (Line 60). If all insertions are distributed to
different available segments (segments with empty slots),
then multiple insertions can be processed concurrently.
Each insertion affects only the local variables within
the segment, so that no false conflicts will be triggered
by data shifts or shared variables. If the target segment
is full, the scheduler will retry the distribution attempt
(Figure 6a).

Algorithm 3 Insertion and Split
59: procedure INSERT(leaf, key)
60: idx = RandomScheduler()
61: while leaf.segs[idx].isFull() and retries < threshold do
62: idx = RandomScheduler() //retry with a new idx
63: retries += 1
64: if !leaf.segs[idx].isFull() then
65: record = leaf.insertSegment(idx, key)
66: else
67: if leaf.hasSpace() then //the node has sufficient space
68: //move the keys to reserved space
69: leaf.moveToReserved()
70: leaf.shrinkSegs()
71: record = leaf.insertSegment(idx, key)
72: else if !leaf.isFull() then
73: leaf.moveToReserved()
74: record = leaf.insertSegment(idx, key)
75: else //node is really full
76: //move the keys to reserved space
77: leaf.moveToReserved()
78: leaf.sortKeys()
79: newNode = leaf.split()
80: leaf.seqno += 1
81: //which one is to insert
82: toInsert = compareKeys(leaf, newNode)
83: record = toInsert.insert(key)
84: while newNode != null do
85: parent = newNode.getParent()
86: newNode = parent.insertNode(newNode)
87: return record

2. If the retry times exceed a threshold, then we can infer
the leaf node is near-full or the key-value pairs stored in
segments distribute unevenly. In this case, we move the
elements in all segments to reserved keys (Figure 6b),
then clean the segments to accommodate new concur-
rent insertions. If the retries are incurred by an uneven
key-value distribution, after we reorganize the keys to
reserved keys, there could remain sufficient room in
segments to support further concurrent insertions.

(a) If there is still sufficient room to hold new keys
(Figure 6c), the scheduler continues to distribute con-
current insertions to different segments (Lines 67-71).

(b) If there is not sufficient room for new keys, the
advisory lock is acquired for a further split operation
(Lines 75-86).

By this means, the leaf node allocates concurrent inser-
tions to different segments, and the shared metadata is nat-
urally divided into several parts. False conflicts are mainly
due to put operations (including updates and insertions) to
consecutive records. By scattering the accesses to multiple
segments, the probability of multiple requests accessing
adjacent records is reduced; thus the false conflict rate can
be decreased. The contiguous reserved keys are used to store

Scheduler
Insert

FULLBUSY

Reserved Keys

Scheduler
Insert

Reserved Keys

Scheduler
Insert

Reserved Keys

Empty Occupied

…

…

…

…

……

Figure 6: Concurrent insertions to a leaf node

key-value pairs for scan or split operation, which will not be
updated and inserted frequently; thus reserved keys do not
increase the false conflict rate.

4.2.3 Splits

1 3 7 8
key_num: 4

… 11 14 15 16
key_num: 4

Sorting

1 2 3 14 15 16…

Split

9 10 … 15 16
LeafNode 1

1 2 … 7 8
LeafNode 0

LeafNode 0

1 2 … 7 8

1
0

1
0

1
0

reserved keys

LeafNode 1

9 10 … 15 16

1
0

1
0

1
0

reserved keys

… …

Control Module Control Module
Reorganizing

Parallel LeafNode

Figure 7: Splitting a node

When a node in a B+Tree is full, a new insertion will
trigger a split. The current node is split into two nodes with
original keys evenly distributed. The content of the parent
node will be adjusted accordingly, and the split propagates
upwards if the parent nodes are full themselves.

Given the insertion semantics related in the previous
section, the keys in leaf nodes of Euno-B+Tree are arranged
in a partially unordered manner (ordered within a segment,
unordered among segments). Therefore splitting a node in
fact includes both sorting and splitting steps. The procedure
of the node split is presented in Lines 75-86 of Algorithm 3.

1. When a node splits, Eunomia first locks the leaf node to
block new incoming insertions; otherwise they are highly
likely to conflict when the keys are being reshuffled.

2. Then the keys in the original node are sorted and stashed
to reserved keys in an ordered manner (Figure 7b and
Lines 76-78).

3. The original node is split according to the normal scheme
of a B+Tree, while the parent node also should be
adjusted accordingly. (Figure 7c and Lines 83-86).

4. In new nodes, old key-value pairs inherited from the old
node are stored in reserved keys, and the remaining empty
slots are evenly distributed to multiple segments. So that
segments will be entirely empty to store new records,

eliminating the overhead of moving old records when
inserting new records. Moreover, such a design can also
avoid resorting them when generating the reserved keys
for scan or split operation (Figure 7d).

In such a sorting-split-reorganizing way, we can con-
strain the randomness of keys within the leaf node layer. The
new keys inserted to parent nodes are ordered, and thus the
internal nodes are still arranged in an ordered way.

4.2.4 Range Query and Deletion
Range queries, which access a set of consecutive keys, are
an important interface for ordered indexes. In Euno-B+Tree,
when a range query request reaches a leaf node, the node will
be locked by the advisory lock, and key-value pairs stored
in all segments will be moved and sorted in reserved keys.
Hence, the scan iterator can get a sequence of ordered keys.

The traversal process of a deletion is similar to that of a
put operation; the tree structure simply labels the status of
the record as deleted and clears the corresponding mark bits.
The tree will not re-balance instantly. Euno-B+Tree reuses
the deletion and garbage collection scheme in DBX [32] to
clean up the unused nodes.

Re-balance. Instead of re-balancing the tree on every
deletion instantly, we do the re-balance when the number
of delete operations exceeds a threshold. Previous research
has proved that such a re-balance scheme has theoretical and
empirical advantages [27] and has been adopted by many
prior systems [20, 32].

4.3 Proof Sketch
This section discusses the correctness of our algorithm with
a proof sketch. The main proof obligation is to show the
lower region is always consistent with upper region. More
specifically, we need to prove that 1. the copy of leaf node
in the upper region is mutual consistent with the copy used
in the lower region. 2. the introduction of conflicting control
module does not affect the consistency. 3. all the acquired
locks will be eventually released.

First, as the sequence number is the key to provide
the mutual consistency of the leaf node. By comparing
the sequence number at the beginning of lower HTM re-
gion (line XXX), we ensure that the leaf node can not be
changed since the upper HTM region commits. Second,
adding the conflicting control module does not affect the
overall correctness. However, to prevent the false negative

of the mark bits, the bit lock is used to ensure the mark
bits (line 38) is atomically updated with the inert operation.
To argue all acquired locks will be eventually released, we
first need to argue there is no deadlock among concurrent
operations. This is ensured by letting all operations acquire
different locks in the same order. We also need to show
every operation make forward progress. As we use a fallback
handler for HTM to ensure it will not abort infinitely, the
operation will eventually execute the codes at line 53 and
line 54 which releases the bit lock and leaf lock.

5. Tree Evaluation
Our implementation of Euno-B+Tree consists of approxi-
mately 600 lines of code in C++. By evaluating the proto-
type, we try to answer the following questions:

• Does Eunomia solve all the issues discussed in sec-
tion 2.3?

• Can Eunomia deliver better performance than a fine-
grained locking B+Tree even under high contention?

• Can Eunomia achieve performance scalability under dif-
ferent contention levels?

• How does the workload (get/put ratios or input distribu-
tions) affect Eunomia’s performance?

• How does each design choice affect the performance?

5.1 Experimental Setup
All experiments were conducted on a 20-core server (two
2.30 GHz 10-core Intel R� Xeon R� E5-2650 chips) running
Linux 3.19.0. Each core has private 32 KB L1 data cache,
32KB L1 instruction cache, and 256 KB L2 cache. Each chip
has a shared 25 MB L3 cache. The cache line size is 64 bytes.
The total DRAM size is 256 GB. We use Intel’s Restricted
Transactional Memory to implement atomic regions.

We compare Euno-B+Tree with three different concur-
rent B+Tree implementations: (1) An HTM-based B+Tree
adopted by many database systems [10, 32, 34], which uses
HTM to protect the atomicity of the entire operation. We
reuse the fallback strategy and retry policy in DBX [32].
(2) A highly optimized concurrent B+Tree implementation
derived from Masstree [20]. It uses fine-grained locks to
achieve good scalability. However, we still use the term
“Masstree” for simplicity. (3) An HTM version of Masstree,
denoted as HTM-Masstree. It uses HTM region to protect
the entire Masstree operation (as in (1)), subsuming multiple
elided locks.

We here adopt the Yahoo! Cloud Serving Bench-
mark (YCSB) [11], which is a representative benchmark
for large-scale key-value storage. For each record, both key
and value have 8 bytes fixed size. The get/put ratio is set to
the default value of 50%/50%. The key range is set to 100
million. The average tree depth is 6 and run duration is set
longer than 20 seconds to get stable performance. Unless
otherwise specified, we use Zipfian as the default input

distribution, private to each thread (intra-thread locality).
The Zipfian distribution has a skew coefficient ✓, and the
probability of accessing a key k is given by

P (k) / (
1

k
)✓ (1)

Thus, we can easily increase the contention rate by
increasing ✓. With ✓ = 0, all records are accessed with the
same probability (uniform distribution); with ✓ = 0.99, the
“hottest” tenth of the values in the set are accessed by 41%
of the requests.

5.2 Throughput

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
T

h
ro

u
g

h
p

u
t

(M
ill

io
n

 o
p

s/
se

c)

Skew Coefficient (θ)

Euno-B+Tree
HTM-B+Tree

Masstree
HTM-Masstree

Figure 8: Throughput under different contention rates
(Thread number is 16).

 0

 10

 20

 30

 40

 50

 60

 70

0.5 0.6 0.7 0.8 0.90.99 0.5 0.6 0.7 0.8 0.90.99

H
T

M
 A

b
o

rt
s

p
e

r
O

p
e

ra
tio

n

Skew Coefficient (θ)

Same Record
Meta-Data

Different Records

Euno-B+TreeHTM-B+Tree

Figure 9: Comparison of HTM aborts incurred by different
reasons (Thread number is 16).

To see whether Eunomia solves the issues discussed in
Section 2.3, we repeat the experiment in Figure 1; the data
are shown in Figure 8. When the contention is low or even
modest (✓ < 0.6), Euno-B+Tree can obtain similar perfor-
mance as HTM-B+Tree about 36.85% higher than Masstree.
This is because Euno-B+Tree uses adaptive concurrency
control to reduce most overhead under low contention, while
Masstree’s fine-grained synchronization needs to execute
additional instructions. According to our analysis, when ✓
= 0.5, the amount of instructions executed by Masstree is
about 2.10X that of Euno-B+Tree. The extra instructions pri-
marily come from the “before-and-after” version checking
mechanism in Masstree (§4.6 of [20]). For example, when
✓ = 0.5, a put operation in Masstree needs on average to
check and manipulate a version number about 15 times while

traversing the tree. Under high contention (✓ > 0.6), Euno-
B+Tree can achieve 11X speedup over HTM-B+Tree (18.6
M vs. 1.7 M Ops/s with ✓ = 0.99). This is because Euno-
mia eliminates most aborts compared with HTM-B+Tree
(Figure 9): 60.3 vs. 1.9 aborts per Op under extreme high
contention. Compared with Masstree, it has 65% better
performance even under high contention. This is because
Euno-B+Tree executes around 40% fewer instructions under
high contention. Performance of the HTM-based Masstree is
worse than Masstree under both low and high contention.
This is because HTM-based Masstree has shared variable
accesses which incurs frequent HTM aborts. This shows
that, even for a highly optimized concurrent B+Tree, it is
still hard to directly take advantage of HTM.

5.3 Scalability

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 4 8 12 16 20

T
h

ro
u

g
h

p
u

t
(M

ill
io

n
 o

p
s/

se
c)

Number of threads

θ=0.2
Euno-B+Tree
HTM-B+Tree

Masstree
HTM-Masstree

(a) Low Contention

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 4 8 12 16 20

T
h

ro
u

g
h

p
u

t
(M

ill
io

n
 o

p
s/

se
c)

Number of threads

θ=0.6
Euno-B+Tree

Masstree
HTM-B+Tree

HTM-Masstree

(b) Modest Contention

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 4 8 12 16 20

T
h

ro
u

g
h

p
u

t
(M

ill
io

n
 o

p
s/

se
c)

Number of threads

θ=0.9
Euno-B+Tree

Masstree
HTM-Masstree

HTM-B+Tree

(c) High Contention

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 4 8 12 16 20

T
h

ro
u

g
h

p
u

t
(M

ill
io

n
 o

p
s/

se
c)

Number of threads

θ=0.99
Euno-B+Tree

Masstree
HTM-Masstree

HTM-B+Tree

(d) Extremely High Contention
Figure 10: Performance scalability under different con-
tention levels.

Besides the skew coefficient, an increase in the number
of threads also intensifies the contention rate. Here we
evaluate scalability with increasing threads under different
levels of contention. We set ✓ by referencing previous
research [15, 37]: 0.2 to simulate low contention; 0.6 for
modest contention; 0.9 for high contention. We also set ✓
to 0.99 to simulate extremely high contention. Figure 10
shows the results. Thanks to the adaptive control, under low
contention (✓ is 0.2), Euno-B+Tree scales smoothly and is
very close to HTM-B+Tree. This indicates that the adap-
tive control can reduce most performance cost under low
contention. However, since Masstree needs to execute more
instructions for synchronization (40% more instructions per
thread), this overhead is amplified by adding more threads.
As a result, Eunomia is 52%-63% better than Masstree under
high contention. HTM-Masstree fails to scale after 8 cores.
Under modest contention (Figure 10b), the performance of
HTM-B+Tree begins to collapse after 4 threads due to the

increase in abort rate. Masstree still has stable performance
as false conflicts do not waste CPU cycles. Under high or
even extreme contention, Euno-B+Tree still has reasonable
scalability and performs better than Masstree (21.9 M vs.
13.1 M Ops/s with 20 threads) for extremely high con-
tention. This benefit is still from the fact that HTM simplifies
the algorithm which makes it execute fewer instructions than
Masstree.

5.4 Get/Put Ratio

 0

 5

 10

 15

 20

 25

 30

 0 4 8 12 16 20

T
h

ro
u

g
h

p
u

t
(M

ill
io

n
 o

p
s/

se
c)

Number of threads

Euno-B+Tree
Masstree

HTM-Masstree
HTM-B+Tree

(a) 0% Get/100% Put

 0

 5

 10

 15

 20

 25

 30

 0 4 8 12 16 20

T
h

ro
u

g
h

p
u

t
(M

ill
io

n
 o

p
s/

se
c)

Number of threads

Euno-B+Tree
Masstree

HTM-Masstree
HTM-B+Tree

(b) 20% Get/80% Put

 0

 5

 10

 15

 20

 25

 30

 0 4 8 12 16 20

T
h

ro
u

g
h

p
u

t
(M

ill
io

n
 o

p
s/

se
c)

Number of threads

Euno-B+Tree
Masstree

HTM-Masstree
HTM-B+Tree

(c) 50% Get/50% Put

 0

 5

 10

 15

 20

 25

 30

 0 4 8 12 16 20

T
h

ro
u

g
h

p
u

t
(M

ill
io

n
 o

p
s/

se
c)

Number of threads

Euno-B+Tree
Masstree

HTM-Masstree
HTM-B+Tree

(d) 70% Get/30% Put
Figure 11: Performance under different get/put ratios in
Zipfian Distribution. Euno-B+Tree achieves scalable perfor-
mance with various get/put ratios under high contention (✓ =
0.9).

Get and put are the fundamental operations of a key-
value store. Interleaved reads and writes often exacerbate
contention. Here we measure the impact of the get/put
ratio on overall performance. We consider ratios of (1) 0%
get/100% put, (2) 20% get/80% put, (3) 50% get/50% put,
and (4) 70% get/30% put.

The default ratio of YCSB is 50% get/50% put [11],
and we adjust the percentage of get and put to simulate
read-heavy and write-heavy situations. Since Eunomia is de-
signed for concurrent tree modifications, we do not consider
the all-get case here.

We measure the Zipfian distribution with high contention
(✓ = 0.9) under these get/put ratios. The performance is
shown in Figure 11. From the results, we can observe that
Euno-B+Tree can achieve near-linear scalability under vari-
ous get/put ratios. The speedup increases with put ratio, and
the advantage of Eunomia is most obvious with 100% puts
(Figure 11a). This is because the put operations introduce
more conflicts, in which case Euno-B+Tree is much better
than other alternatives. The performance of Masstree also
scales smoothly with threads, but is still 25% lower than
Euno-B+Tree on average.

5.5 Different Input Distributions

 0

 5

 10

 15

 20

 25

 30

 0 4 8 12 16 20

T
h

ro
u

g
h

p
u

t
(M

ill
io

n
 o

p
s/

se
c)

Number of threads

λ=2Euno-B+Tree
Masstree

HTM-Masstree
HTM-B+Tree

(a) Poisson Distribution

 0

 5

 10

 15

 20

 25

 30

 0 4 8 12 16 20

T
h

ro
u

g
h

p
u

t
(M

ill
io

n
 o

p
s/

se
c)

Number of threads

σ=0.1Euno-B+Tree
Masstree

HTM-Masstree
HTM-B+Tree

(b) Normal Distribution

 0

 5

 10

 15

 20

 25

 30

 0 4 8 12 16 20

T
h

ro
u

g
h

p
u

t
(M

ill
io

n
 o

p
s/

se
c)

Number of threads

h=0.35Euno-B+Tree
Masstree

HTM-B+Tree
HTM-Masstree

(c) Self-Similar Distribution

 0

 5

 10

 15

 20

 25

 30

 0 4 8 12 16 20

T
h

ro
u

g
h

p
u

t
(M

ill
io

n
 o

p
s/

se
c)

Number of threads

θ=0.9Euno-B+Tree
Masstree

HTM-Masstree
HTM-B+Tree

(d) Zipfian Distribution
Figure 12: Performance with different input distributions
under high contention.

Since the input keys may follow various kinds of dis-
tributions in real use cases, we measure performance with
the following mainstream input distributions. Requests with
different types of contended keys constitute different input
distributions and thus impact the performance of B+Tree
systems in different ways.
• Poisson: A common distribution in probability and

statistics, Poisson expresses the probability of a given
number of events occurring in a fixed interval of time or
space if such events happen with a known average rate
and independently of the time since the last event. The
skew coefficient is determined by the expected value �.
Here we set contention such that the 10% hottest records
are accessed by 70% of the requests.

• Normal: Here the requests are chosen to follow a Nor-
mal distribution with mean of N/2, where N is the set
to cover a moving range of leaf nodes. The standard
deviation is set to 1% of the mean to simulate a skewed
situation. Here we set contention such that the 10%
hottest records are accessed by 67% of the requests.

• Self-Similar: Common in network traffic, the requests
in this distribution follow an 80-20 rule [17]. Within
any range of the distribution, the skew coefficient is the
same as in any other region. Here we set contention such
that the 10% hottest records are accessed by 66% of the
requests.

The get/put ratio is set to the default 50%/50% in each
distribution. The results are shown in Figure 12 (the Zipfian
distribution is tested with ✓ = 0.9). From the figure, we can
observe that Euno-B+Tree can achieve scalable performance
under various input distributions, higher than HTM-B+Tree
and lock-based Masstree. In the Poisson distribution, Self-
Similar distribution, and Zipfian distribution, the perfor-

mance of HTM-B+Tree collapses when threads exceed 2
or 4, due to the CPU time wasted by HTM aborts and
retries. Under the normal distribution, the input distributes
densely around the expected value; thus, the performance
of HTM-B+Tree keeps at a low level, without any obvious
trend increasing. The performance of Masstree can scale
stably under Zipfian distributions since its contention is
comparatively modest among the four input distributions,
yet is 38%-51% (40% on average) lower than Euno-B+Tree
due to the number of executed instructions.

5.6 Impact of Different Design Choices

 0

 5

 10

 15

 20

 25

 30

 35

 40

Basline

+Split H
TM

+Part Leaf

+C
C
M

 Lockbits

+C
C
M

 M
arkbits

Basline

+Split H
TM

+Part Leaf

+C
C
M

 Lockbits

+C
C
M

 M
arkbits

+Adaptive

T
h

ro
u

g
h

p
u

t
(M

ill
io

n
 o

p
s/

se
co

n
d

)

High Contention Low Contention

1
1.83

4.58

9.68

11.10

1 0.97
0.93

0.85 0.83

0.98

Figure 13: Impact of Different Design Choices. The relative
performance is labeled on the top of each column.

To understand the performance improvement and cost
from various design aspects, we here present an analysis of
multiple factors in Figure 13. The benchmark is the YCSB
with Zipfian input distribution with 20 threads under both
high contention (✓ is 0.9) and low contention (✓ is 0.2).

Baseline refers to an HTM-B+Tree using a single RTM
region to protect the entire operation. +Split HTM means
splitting the monolithic HTM region into two parts, and
using version numbers to protect consistency. +Part Leaf
refers to partitioning the leaf nodes to avoid false con-
flicts. +CCM lockbits/+CCM markbits refer to adopting the
lock bits/mark bits in the conflict control module. +Adap-
tive means adopting adaptive concurrency control under low
contention.

First, splitting the monolithic HTM region gets 1.83X
speedup under high contention, as the overhead of roll-
back is reduced. Under low contention, it introduces 3%
overhead, as it doubles the number of RTM instructions
for each operation. Second, partitioned leaf nodes (+Part
Leaf) generates 4.58X speedup under high contention, as
it decreases the false conflict rate caused by accessing
the same leaf node. But it incurs 4% performance slow
down under low contention by introducing extra overhead
on searching. By further reducing false conflicts, +CCM
lockbits and +CCM markbits get 9.68X and 11.10X speedup
under high contention. They also introduce overhead (8%
and 2%) under low contention due to extra computation.

With +Adaptive, the overhead introduced by the system is
successfully bypassed. As a result, we only have 2% perfor-
mance overhead under low contention, which is brought by
extra HTM instructions and version checking.

5.7 Memory Consumption Analysis
In the design of Euno-B+Tree, two structures would involve
additional memory consumption: reserved keys and the
conflict control module. The conflict control module consists
of two bit vectors for each leaf node and its memory
consumption is negligible. Therefore, the main memory
overhead comes from reserved keys. Here, we evaluate
the memory consumption overhead of Euno-B+Tree using
Valgrind toolset [24]. The workload includes getting and
putting 10 million keys in a Zipfian distribution with 16
threads. The node fanout is set to 16, and run duration is
set to longer than 20 seconds to get stable performance.

1. We have measured the memory overhead under different
contention rates. We varied the skew coefficient of the
Zipfian Distribution from 0.0 to 1.0. The results show
that the average memory consumption overhead is 5.64%
(1.79GB v.s. 1.69GB) (from 2.44% to 7.64%).

2. We have also measured the memory overhead with dif-
ferent get/put ratios: 0.2/0.8, 0.5/0.5, and 0.8/0.2. The
results show that the average memory consumption over-
head is 4.21% (1.62GB v.s. 1.55GB) (from 2.91% to
5.80%).

3. We have also measured the memory overhead with dif-
ferent input distributions. The input distributions include
Self-Similar Distribution, Poisson Distribution, and Uni-
form Distribution. The results show that the average
memory overhead is 2.20% (1.81GB v.s. 1.77GB), 6.91%
(1.81GB v.s. 1.70GB), and 2.25% (1.77GB v.s. 1.74GB)
respectively.

As such analysis results show, the additional memory
consumption is small. The major reason behind this is
that reserved keys work as a transient buffer to hold the
keys being sorted for split and scan operations. Such data
structures are allocated and freed dynamically and they are
allocated only before a split or a scan operation.

6. Related Work
Conventional concurrent search tree structures [16] usually
adopt fine-grained locks [2, 4, 20, 29] or lock free meth-
ods [7, 23, 26, 28] to unleash concurrency and provide
consistency. These methods can provide scalability, but incur
high performance cost due to thread synchronization. At
the same time, lock-free schemes primarily use single-word
atomic instructions to coordinate multiple threads, making
it difficult to argue correctness. Compared with them, we
leverage HTM to simplify the implementation and provide
good scalability.

Recent works [31, 32] also try to use HTM to simply the
implementation of concurrent data structures. However, it
could also exhibit pathological performance if misused. Dice
et al. [14] note that memory allocators could incur certain
pathological cases. Unlike them, who use HTM intuitively,
we figure out more subtle design to achieve scalability
under high contention. Brown et al. [8] also find that multi-
socket architecture could have a critical influence on the
behavior of HTM, as cross-socket cache access lengthens
the time to complete a transaction. In our research, we have
also noticed the impact of NUMA architecture. However,
NUMA architecture only magnifies the impact of transaction
conflicts. Our research attempts to find a way to eliminate
conflicts, thus solve the problem from the source.

An extensive body of research has discussed techniques
to improve HTM efficiency by splitting monolithic trans-
actions. Hassan et al. [18] propose optimistic transactional
boosting (OTB), which divides each operation of concurrent
data structures into three steps (traversal, validation, and
commit). Afek et al. [1] propose consistency oblivious
programming (COP), which splits concurrent code to boxes,
and allows sections of code that meet certain criteria to
execute without checking for consistency. Xiang et al. [35,
36] propose software partitioning of hardware transactions
(ParT). It splits common operations into read-mostly plan-
ning phase and write-mostly completion phase. These meth-
ods try to reduce conflicts by shrinking transaction size, and
our design differs from these works in two aspects: first, we
focus on highly-contented workloads; second, we attempt to
reduce both true and false conflicts.

7. Conclusions
We have presented Eunomia, a design pattern for con-
current search tree structures under high contention. First,
Eunomia provides a new strategy of partitioning monolithic
transactions to reduce abort rate. Second, Eunomia scatters
the original tree structure to reduce false conflicts. Third,
Eunomia adopts fine-grained advisory locks to eliminate
true conflicts. Fourth, Eunomia adapts away the overhead
under low contention. We have shown the effectiveness of
Eunomia by refactoring a concurrent B+Tree according to
Eunomia design patterns.

Acknowledgments
We thank our shepherd, Michael Scott, and the anony-
mous reviewers for their constructive comments. We are
grateful to support from the National Key Research and
Development Program of China (No. 2016YFB0800104),
the National Natural Science Foundation of China (No.
61672160), Shanghai Science and Technology Development
Funds (16JC1400801) and NFS award CNS-1218117.

References
[1] Y. Afek, H. Avni, and N. Shavit. Towards consistency

oblivious programming. In OPODIS, pages 65–79, 2011.
[2] M. K. Aguilera, W. Golab, and M. A. Shah. A practical

scalable distributed B-Tree. VLDB, 1(1):598–609, 2008.
[3] R. Bayer and E. McCreight. Organization and maintenance of

large ordered indexes. In Software pioneers, pages 245–262,
2002.

[4] J. Besa and Y. Eterovic. A concurrent red–black tree. JPDC,
pages 434–449, 2013.

[5] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM, 13(7):422–
426, 1970.

[6] C. Blundell, E. C. Lewis, and M. M. Martin. Subtleties of
transactional memory atomicity semantics. IEEE Computer
Architecture Letters, 5(2), 2006.

[7] A. Braginsky and E. Petrank. A lock-free B+Tree. In SPAA,
pages 58–67, 2012.

[8] T. Brown, A. Kogan, Y. Lev, and V. Luchangco. Investigating
the performance of hardware transactions on a multi-socket
machine. In SPAA, pages 121–132, 2016.

[9] H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams, and
H. Le. Robust architectural support for transactional memory
in the power architecture. In ISCA, pages 225–236, 2013.

[10] Y. Chen, X. Wei, J. Shi, R. Chen, and H. Chen. Fast and
general distributed transactions using RDMA and HTM. In
EuroSys, pages 26:1–26:17, 2016.

[11] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with YCSB.
In SOCC, pages 143–154, 2010.

[12] I. Corporation. Intel R� 64 and ia-32 architectures software
developers manual, 2015.

[13] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early
experience with a commercial hardware transactional memory
implementation. In ASPLOS, pages 157–168, 2009.

[14] D. Dice, T. Harris, A. Kogan, and Y. Lev. The influence
of malloc placement on tsx hardware transactional memory.
arXiv preprint arXiv:1504.04640, 2015.

[15] J. Dittrich, L. Blunschi, and M. A. V. Salles. Dwarfs in the
rearview mirror: how big are they really? VLDB, 1(2):1586–
1597, 2008.

[16] G. Graefe. Modern B-Tree techniques. Found. Trends
databases, pages 203–402, 2011.

[17] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J.
Weinberger. Quickily generating billion-record synthetic
databases. In SIGMOD, volume 23, pages 243–252, 1994.

[18] A. Hassan, R. Palmieri, and B. Ravindran. On developing
optimistic transactional lazy set. In OPODIS, pages 437–452,
2014.

[19] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In ISCA.
ACM, 1993.

[20] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness for
fast multicore key-value storage. In Eurosys, pages 183–196,
2012.

[21] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extracting more
concurrency from distributed transactions. In OSDI, pages
479–494, 2014.

[22] N. Narula, C. Cutler, E. Kohler, and R. Morris. Phase
reconciliation for contended in-memory transactions. In
OSDI, pages 511–524, 2014.

[23] A. Natarajan and N. Mittal. Fast concurrent lock-free binary
search trees. In PPoPP, pages 317–328, 2014.

[24] N. Nethercote and J. Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In PLDI, pages
89–100, 2007.

[25] D. M. Powers. Applications and explanations of zipf’s law.
Joint conferences on new methods in language processing
and computational natural language learning, pages 151–
160, 1998.

[26] A. Ramachandran and N. Mittal. Improving efficacy of
internal binary search trees using local recovery. In PPoPP,
pages 42:1–42:2, 2016.

[27] S. Sen and R. E. Tarjan. Deletion without rebalancing in
balanced binary trees. In SODA, pages 1490–1499, 2010.

[28] J. Sewall, J. Chhugani, C. Kim, N. Satish, and P. Dubey.
PALM: Parallel architecture-friendly latch-free modifications
to B+Trees on many-core processors. VLDB, 4(11):795–806,
2011.

[29] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy
transactions in multicore in-memory databases. In SOSP,
pages 18–32, 2013.

[30] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht,
C. Barton, R. Silvera, and M. Michael. Evaluation of blue
gene/q hardware support for transactional memories. In
PACT, pages 127–136, 2012.

[31] Z. Wang, H. Qian, H. Chen, and J. Li. Opportunities
and pitfalls of multi-core scaling using hardware transaction
memory. In APSys, pages 3:1–3:7, 2013.

[32] Z. Wang, H. Qian, J. Li, and H. Chen. Using restricted
transactional memory to build a scalable in-memory database.
In EuroSys, pages 26:1–26:15, 2014.

[33] Z. Wang, S. Mu, H. Y. Yang Cui, H. Chen, and J. Li. Scaling
multicore databases via constrained parallel execution. In
SIGMOD, pages 1643–1658, 2016.

[34] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast in-
memory transaction processing using rdma and htm. In SOSP,
pages 87–104, 2015.

[35] L. Xiang and M. L. Scott. Composable partitioned
transactions. In Wkshp. on the Theory of Transactional
Memory (WTTM), 2013.

[36] L. Xiang and M. L. Scott. Software partitioning of hardware
transactions. In PPoPP, pages 76–86, 2015.

[37] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker.
Staring into the abyss: An evaluation of concurrency control
with one thousand cores. VLDB, 8(3):209–220, 2014.

	Introduction
	Background and Motivation
	HTM Semantics and Concurrent B+Tree
	HTM-based B+Tree
	Issues under High Contention

	Eunomia Design Pattern
	Concurrent B+Tree using Eunomia
	Design of Euno-B+Tree
	Algorithms
	Get/Put Interfaces
	Insertions
	Splits
	Range Query and Deletion

	Proof Sketch

	Tree Evaluation
	Experimental Setup
	Throughput
	Scalability
	Get/Put Ratio
	Different Input Distributions
	Impact of Different Design Choices
	Memory Consumption Analysis

	Related Work
	Conclusions

